专家-李国豪
2015-04-22
李国豪生平介绍
1913年4月出生,广东梅州人,桥梁工程与结构力学专家,中国科学院院士,中国工程院院士。
1936年毕业于同济大学土木系,1938年至1945年在德国达姆斯塔特工业大学专攻桥梁工程和结构力学,1940年和1942年先后获工学博士和特许教博士学位,发表的重要论文有“悬索桥按二阶理论实用计算方法”,“弹性平衡分支充分差别准则”及“桁架和类似结构分析新方法”等,被誉为“悬索桥李”。
1946年夏回国后,李国豪任上海市工务局工程师,同时担任同济大学教授,1956年任同济大学副校长,1977年至1984年任校长,此后任名誉校长。
武汉长江大桥、南京长江大桥、江阴长江大桥、上海南浦大桥、广东虎门大桥……都凝聚着李国豪的智慧。
上世纪50年代,长江上第一座大桥——武汉长江大桥建成。60年代,我国自己建造的南京长江大桥通车。
但是,这两座大桥都存在晃动现象。“文化大革命”期间,李国豪被关押批斗,困于囚室的他在报纸的边角上做演算,用赛璐璐贴片做实验模型,经过几年的艰苦研究,终于揭开了大桥晃动的秘密。
上世纪80年代初,上海酝酿在黄浦江上造大桥。李国豪和同事们提出了叠合梁斜拉桥的方案。这个方案的优点,一是重量轻,二是施工时间短。李国豪向江泽民同志坦陈了我国桥梁工程界的进步,积极争取由中国人自己来建造黄浦江大桥。江泽民同志果断拍板:“就由中国人自己设计。”南浦大桥的建成通车,树立了
界的民族自信心,还创造了当时斜拉桥跨度的世界新纪录。
李国豪担任同济大学校长时,他的严谨治学和求实敬业精神给弟子留下了深刻的印象。范立础院士是李国豪教授的一个大弟子。好多年前,一直对自己政治上的进步信心不足的范立础,在陪同李校长出国考察途中被先生认真地追问:“你为什么不争取加入中国共产党?”范立础老实地坦白,是怕党组织不批准。李校长开导说,你应该首先考虑对自己是不是该严格要求一点,从那时起,范立础开始积极争取入党,经过多年努力,终于在1984年成了一名光荣的共产党员。
悬索桥李]——变位理论的实用方法
李国豪在研究悬索桥变位理论实用方法中发现:
1.悬索桥变位引起非线性项相当于将主索的水平拉力直接作用在加劲梁上的效果。根据这一发现所提出的等效模型不但揭示了悬索桥力学本质,而且使这种复杂的结构分析一下子被简化了,特别是为了振动分析铺平了道路。
2.虽然非线性项的存在使迭加原理失效,但影响线却是桥梁计算中确定最不利加载位置的依据。考虑到大跨度悬索桥中活载相比于恒载较小的特点,李国豪提出了“奇异”影响线的概念,将非性问题在有限制的范围内加以线性化。
3.为了减轻反复试算和迭代计算的困难,李国豪找到了通过三次线性理论的计算,然后以内插求解的途径,巧妙地解决了问题。
上述三个基本思想构成了他的实用方法的骨架。这在40年代初是具有重大意义的突破。虽然在计算机已经普及的今天,人们已能方便地进行各种复杂的非线性分析,但李国豪的贡献在方法论上的意义却是永存的,他的论文至今仍作为经典悬索桥二阶理论的宝贵历史遗产而被各国教材所引用。特别是在德国,“悬索桥李”的美名一直在土木工程界流传着。
结构稳定理论
在40年代初,理想中心压杆的欧拉临界力,即第一类稳定的分支压屈荷载已为工程界所掌握,而偏心压杆的第二类稳定压溃荷载的研究尚处于探索阶段。对于压弯杆件包括一些压弯的框架和拱是否存在分支点的问题,当时还缺少明确的认识。
李国豪在参加DIN4114规范的工作中意识到区分两类不同性质的稳定问题的重要性。他以能量变分的形式于1943年提出的“弹性平衡分支的充足辨别准则一文,从理论的高度阐明了两者的本质区别和辨别准则。他的研究表明:由齐次方程所描述的平衡是其他各种可能的、由非齐次方程或积分方程所描述的平衡问题的一个特例。平衡存在分支点的条件是只要所给定的平衡状态中,不包含系统最低固有函数形式的变形分量。
这一辨别准则虽然不是提供具体的稳定验算方法,但却具有普遍的指导意义。它对于具有初始弯曲或扭转的实际结构,如板的翘曲、梁的侧倾、拱和刚架的屈曲以及杆的弯扭屈曲和桁梁桥侧倾稳定等都是适用的。
离散杆系结构的连续化分析方法和桁梁弯曲与扭转理论
桁架是一种离散的杆系结构。在计算机尚未问世的40年代,用古典的力法分析,即使只有十余次超静定桁架结构也是一件十分繁重的工作。1943年,李国豪在分析一座复杂的多腹杆菱形桁架体系时,面对50多次超静定结构的困难,他想到了当时处理悬索桥吊杆的“膜理论”,将离散的桁架体系也化成连续体系,用微分方程来处理。他仔细推导了刚度转换的等效关系,并用模型试验反复验证,经过多次改进,终于达到了理论和试验的一致,写出了题为“桁架和类似体系结构计算的新方法”的论文,为桁架结构分析开辟了一条新的途径,在离散结构和连续结构之间架起了桥梁。30年以后,李国豪又拿起了这一武器,把桁梁桥这种空间杆系结构和闭口薄壁杆件的弯扭理论联系起来,建立了“桁梁的弯曲与扭转理论”,系统地解决了桁梁结构的空间分析、稳定分析和振动分析的整套计算方法。同时也澄清了武汉长江大桥的晃动现象的本质。
李国豪还将当时刚刚诞生的有限元法的思想引入了桁梁桥的分析。他把连续化了的桁梁结构再分段离散,建立了特殊的“桁梁有限元”,其中包括了反映桁梁横截面翘曲和畸变的必要的位移参数。分段离散后的单元又便于处理变截面和多跨连续等的实际情况以及考虑桁梁、拱和悬索等其他体系的相互组合,达到了灵活多变的境界。特别是对于稳定和振动分析,既能大大节省计算时间,又能取得足够准确的结果。
桥梁振动理论
在30年代,铁路桥梁在蒸汽机牵引列车通过时的强迫振动及冲击系数问题是一个十分热门的前沿课题,没有人想到要研究像悬索桥这种复杂结构的振动问题。他很快就弄清了悬索桥的自振特性,并且顺利地将Ing1is用于梁式桥的振动理论移植过来,得到了满意的解答。
50年代,他又将悬索桥的振动理论推广应用于“拱桥振动问题”。
60年代,他承担了结构抗爆的研究任务。结构抗爆问题的本质涉及到钢筋混凝土地下防护结构的弹塑性振动力学,土动力学和爆炸波动力学等领域,这是一个尖端的非线性振动课题。李国豪使同济大学逐渐成为我国防护工程和地震工程学科的研究中心之一。
1978年起,面对我国大跨度斜拉桥日益增多的新形势,李国豪从研究斜拉桥动力分析有限元法入手,又开辟了桥梁抗风研究的新领域。经过多年努力,培养了一批人才;在桥梁风振理论领域创造性地提出了“多振型耦合颤振”的新概念,澄清了国际上将悬索桥的颤振理论直接用于斜拉桥所带来的一些模糊问题;改进了颤振分析的试验方法和数值计算方法,不仅在国内居领先地位,而且引起了国际工程界的注意。
1988年,李国豪已值古稀之年,但仍壮心不已,兴致勃勃地探索斜拉桥颤振后性能的问题,这是一个从未有人研究过的领域。目的是为了使斜拉桥这一经济合理的桥型向更大跨度发展,最大程度地发挥其抗风潜力。他的理论研究取得了有意义的成果,阐明了斜拉桥颤振后的振动之所以不迅速发散是由于斜缆索的“有效弹性模量”的非线性,而不是实际不存在的所谓“系统阻尼”作用的结果
在结构振动的领域,他的贡献遍及抗车辆冲击、抗爆炸、抗震和抗风等所有方面。从基于变分原理的近似解析手段到有限元的数值解,他经历了计算机前和计算机后两个不同的时代。他不仅是驾驶经典手法的巨匠,也是运用新技术的能手。他始终站在学术界的前沿,指引着科研前进的方向。
梁桥荷载横向分布理论及桥梁空间分析
桥梁是一个空间结构,为了使空间分析平面化,荷载横向分布的计算是必不可少的。世界各国的学者在处理这一问题的过程中,形成了许多派别。他们的力学模型大都是一种近似处理,也都存在着各自的缺点。70年代初,李国豪下放到镇北黄河大桥劳动时,结合工程实际,分析比较已有方法的优缺点,提出了一种原理简单、又能概括所有其他各种计算方法的新的梁系模型。这一力学模型的特点是将桥面板沿纵向割开形成各主梁单元,同时将少数几根横隔梁的刚度分摊到桥面板中。在割开的板缝中忽略法向力和纵向剪力,只保留两个对荷载分布起主要作用的竖向剪力和弯矩。最后利用计算荷载横向分布的基本假定:即以正弦形状荷载代替实际的列车荷载,使计算实用化。通过模型试验,检验了方法的合理性和足够的精度,并进一步编制了便于实用的图表。新的梁系模型与实际桥梁最为接近,比梁格系模型的精度高,又克服了各向异性板模型需要来回换算的缺点,同时在计算中也反映了少数横隔梁的重要作用。对于常用铰接板和铰接T梁桥,只要进一步略去板缝中的弯矩即可。因此,1977年,李国豪的《公路桥梁荷载横向分布计算》一书的出版,就成了这一延续30年的传统课题的最后总结。
1978年,李国豪还发表了“拱桥荷载横向分布理论分析”一文,大大改进了当时在拱桥设计中普遍采用的平均分配法或刚性分配法等十分粗略的荷载横向分布计算。拱桥作为既受轴力又受弯矩的结构,有着不同于梁桥的荷载分布规律。在它的理论分析中必须考虑分割的相邻拱单元之间的所有内力。李国豪引伸对梁式桥的分析方法于拱桥,建立了这方面的理论,并以现场测试结果作了验证。1989年,他又进一步推广这种分析方法,完成了曲线桥荷载横向分布计算的研究。
在李国豪对桥梁空间分析的贡献中,除前面在桁梁的弯曲与扭转理论中所说的以外,应当特别提到他在1958年发表的“斜交各向异性板弯曲理论及其对于斜桥的应用”一文。他针对斜桥的实际构造,将正交各向异性板理论,通过斜交坐标延伸为斜交各向异性板的弯曲理论,使各向同性斜板理论和斜交梁格系理论成为它的两个特例。李国豪的这一开拓性的工作很快就引起了国外力学工作者的重视,并以“李氏理论”为名被学术界所引用。
以科学态度和刻苦精神解决了结构理论中的许多难题
在科学研究工作中,他崇尚实事求是的作风和严谨科学的态度。他特别注意理论联系实际,他的理论从不满足于推导和计算,总是力求以模型试验或现场测试来检验修改和证实理论的正确性。以刻苦坚毅的精神解决了结构理论中的许多难题。凡是做过他助手的人都深深地为他尊重事实、一丝不苟的态度所感动。他在科研选题上一贯倡导“必须具有工程背景,必须解决实际问题”。他常说,我们的研究主体是工程,左右臂是数学和力学。坚持主张理论意义和实用价值相结合。
他喜欢研究老难题和别人尚未涉足过的新问题。他的思维方法富于开创性。他常常能从纷繁迷离、错综复杂的现象中,敏锐地看到问题的本质,抓住重点,以独创的、新颖的、简练的手法解决问题。他的成果闪耀着智慧的光芒,因而在国际、国内赢得了威望。