首页 > 检测加固> 正文
曲线连续梁桥的病害与温度效应
2013-09-03 来源:筑龙网
前言

  与直线梁桥相比,由于曲率的影响,导致曲线梁桥产生弯扭耦合作用,并且曲线梁桥的质量中心不在轴线梁端的连线上,即使在自重的作用下,桥梁结构也会产生扭矩,所以,曲线桥梁的内功、变形计算远比直线梁桥复杂。因此,国内常有曲线梁桥、并以立交匝道桥居多,在施工中或建成后发生错位变形现象比较普遍。

  最常见的问题表现为为曲线梁沿径向的位移过大,在一定条件下,有时会突然发生较大的整体位移。随着发生问题曲线梁桥的日益增多,对其结构特点、受力性能及破坏机理分析已引起国内桥梁界同行的重视。

  据报道,深圳市城管办2001年委托权威桥梁机构对市区47座桥梁进行检测或监测,检查结果被认为是“充分暴露了深圳桥梁,尤其是独墩单支座曲线桥梁存在的结构安全问题不容忽视”。专家认为:独墩单支座支承曲线桥梁在受力上存在抗扭性能差的明显缺陷,同时在设计上难以对其径向限位措施做到尽善尽美,在重车高速通过的离心力以及温度应力等复合因素作用下,梁体产生极为不利的横向累计位移,严重影响桥梁的安全运营。

  尽管各桥情况各异,但对此问题,国内桥梁界目前已经有几点共识:

  (1)当前国内对独柱曲线梁桥特有力学现象的认识还不够深入,理论分析方法仍不全面和准确,以致某些桥在某种工况下发生过大的扭转变形,在施工或完成后容易造成内侧支座脱空、支座破坏等;

  (2)梁体发生侧移、扭转变形的起因比较复杂,多数由于持续环境荷载的作用、预应力束的设置与施工不当、支座设置不合理等多种因素的综合作用;

  (3)国家及相关部门对此类曲线桥梁尚缺完善的设计规范;

  (4)关于此类桥梁承受持续环境荷载的研究,尚有较大的欠缺。

  因此,对曲线梁桥进行较深入的研究,己经日趋得到各方面的重视。本文应用有限元方法,以连续曲线箱梁桥为工程背景,对温度荷载作用下曲线连续梁桥的受力与变形特点进行分析。

  1、工程实例分析

  1.1 工程概况

  某枢纽立交B匝道桥由两联组成,其中第二联平曲线半径R=243.7 m,桥宽8.5 m,上部构造为6×30 m预应力混凝土连续箱梁。桥台和联接墩为双

  柱式,其余墩为独柱式,下部均为钻孔灌注桩基础。为防止扭转变形,设计中将第二联独柱墩中心线沿径向向外侧偏移9cm。第二联共设支座9个,其中, 墩为单墩固定支座, 墩和 桥台并排设置两个支座,问距2.5 m,为双向活动支座,其余中间墩均为独柱双向活动支座。各墩的桩位平面布置图见图1所示。

  图1 B匝道桥第二联桩位平面布置图
  该匝道桥已于2003年底完成箱梁主体的施工,2004年8月,在B匝道桥第一联完工后进行桥面铺装工程的施工准备工作时,发现在 联接墩伸缩缝处两侧的箱梁梁体发生相对错位,第7孔箱梁中线沿径向向外偏移4.5 cm。2005年6月,通过进一步的检测发现,变形又有所增大,第7孔箱梁中线沿径向向外偏移约7.5 cm,如图2所示。而且,出现 联接墩和 台的外侧支座压死、内侧支座脱空的现象,向外侧的扭转变形约 。为保证该桥在运营状态下正常工作,决定对该桥进行复位和结构体系改善。


  1.2 计算模型

  1.2.1 单元剖分

  全桥上部结构共剖分32 047个单元。其中,箱梁横隔板采用Shell43壳单元,共计490个单元;其他桥面结构采用壳单元Shell63,共计28 080个单元;预应力钢束采用Link8单元,共计3 468个单元;支座偏心采用刚臂单元MPC184,共计9个单元。全桥桥面系共划分节点30160个,支座部分节点共计9个,全桥节点合计30169个,剖分后的有限元网格局部如图3所示。


  1.2.2 计算参数说明:

  混凝土容重2 500 ks/m3,钢材容重7 800 kg/m3,混凝土强度等级为C50,弹性模量E=3.45 X N/rn2,泊松比取0.2,线膨胀系数: ,钢绞线弹性模量 ,泊松比取0.3,线膨胀系数 ,预应力钢束的预应力损失按30%考虑。

  1.3 荷载工况

  混凝土箱形截面梁受阳光照射后,其向阳表面的温度变化幅度大,其背阳表面温度变化幅度小,且沿高度方向各纤维层的温度是不同的,从而产生所谓的温度梯度。由于结构材料热胀冷缩的性质,势必产生温度变形,当变形受到结构的内部纤维约束和超静定约束时 至骞构会产生相当大的温度应力。研究资料表明,温度应力可以达到、甚至超过汽车活载作用下的应力。

  温度效应, 包括年平均温差(整体升、降温)和日照骤变温差 (内夕卜温差和竖向梯度)。然而,由于技术水平的限制,我国的公路桥梁设计规范中给出了整体升、降温和顶板升温的工况,而关于竖向温度梯度则只给出了T形截面梁的简单日照温差分布图,在箱形截面上的适用性如何至今还没有准确的结论。理论分析表明,不同的竖向温度梯度模式对桥梁上部结构的影响非常大。目前,世界各国对于竖向温度梯度的分布也没有达成共识,如英国、美国、新西兰和欧洲等国家都有各自的温度梯度模式,相互之间的差别也很大。

  由于二期恒载中仅有护栏一项,而桥面铺装等还没有完成,使梁体发生偏移的主要原因应该与不利温度场的作用有关,因此,荷载工况主要考虑了以下几种工况,并且同时考虑了常年温差(箱梁整体升温)和日照温差(箱梁两侧的温差)的影响。

  其中,箱梁顶板升温10℃是在参考新《公路桥涵设计通用规范》(JTG D60—2004)、现场施工实测资料以及文献[7、10]的基础上综合取定的,竖向温度梯度分布取折线。根据桥梁方位,曲线箱梁的里侧面向东南方向,因此里侧直接受太阳照射,温度应该比外侧高,里外侧温差10℃是根据现场施工实测资料以及文献[7]中的实测记录确定的。反向温差的工况是为了考察日照温差对桥梁方位的影响。

  1.4 计算结果

  1.4.1 工况1

  在一期恒载和部分二期恒载作用下,外侧支座约为内侧支座反力的4倍。结果表明:原设计的9cm预设偏心过小。

  1.4.2 工况2

  通过计算发现,顶板升温10℃时,曲线箱梁桥沿径向的位移并不是很大,最大仅为0.5cm,但是扭转变形突出,扭转角度约 ,在 联接和 桥台处的内侧支座均产生拉力,造成支座脱空。工况1作用下各支座反力和位移如表1所示。


  1.4.3 工况3

  在常年温差作用下,即箱梁整体升温34℃时,曲线梁桥在径向的位移明显,梁端最大位移为1.1cm,说明常年温差的作用是造成曲线桥梁发生径向偏移的主要原因,而扭转变形则介于工况1和工况2之间。

  1.4.4 工况4

  在箱梁里、外侧10℃温差作用下,曲线箱梁桥沿径向的位移量介于整体升温和顶板升温之间,最大径向位移为0.80cm。

  1.4.5 工况5

  当曲线箱梁外侧温度比内侧温度高1O℃时,曲线箱梁桥沿径向的位移不明显,说明曲线箱梁桥具有较好的抵抗外径温度高、内径温度低引起变形的能力,因此说,曲线箱梁桥的方位对其受力和变形有一定影响。

  1.5 不同规范比较

  如前面所述,工况2中所考虑的箱梁顶板升温1O℃是在参考新《公路桥涵设计通用规范》 (JTGD60—2004)、现场施工实测资料以及文献[7、10]的基础上综合取定的。而原结构设计所依据的是《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023—85),为了考察不同设计规范中温度效应计算的规定对箱梁受力的影响,这里设计了3个计算方案,并分别将依据3种计算规定的计算结果列出,以比较它们之间的差别。

  1.5.1 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023-85)

  在附录五中关于T形截面连续梁由日照温差引起的内力的计算中规定:在无实测资料时,可假定温度差+5℃(桥面板上升5℃),并在桥面板内均匀分布。为了便于对比,计算工况均取工况2时的条件,只有梯度温度不同,计算结果如表2所示。


  1.5.2 《公路桥涵设计通用规范》(JTG D60—2004)依据第4.3.10条第3款规定:对混凝土铺装桥面来说,桥面板的最高温度取25℃,竖向梯度温度取折线,该规定是在参考美国AASHTO规范基础上进行改动的。该工况下的计算结果见表3所示。


  1.5.3 顶板升温1O℃

  计算结果在前面工况2中已经给出。

  1.5.4 对比分析结果

  通过3个计算方案的对比可以发现,根据现有约束条件,依据原《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ023—85)中的梯度温度规定计算时, 联接墩和 桥台的内侧支座均不会出现拉力,而依据新的公路桥规中的梯度温度计算时,产生的拉力非常大,达到333 kN。而按顶板升温1O℃的计算结果介于二者之间。

  这一方面说明,新的公路桥规在梯度温度方面的改动幅度很大,过渡不是很平顺;另一方面也说明,我国原公路桥规关于梯度温度的规定明显不合适,而且无论是与新的公路桥梁规范(JTG D62—2004)或是新的《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》(TB 10002.3-2005)相比都偏于不安全,这也是造成本文所分析的曲线连续箱梁桥发生支座脱空和径向偏移的原因之一。

  1.6 主要原因分析

  针对本文所分析曲线连续箱梁桥所出现的病害,利用ANSYS程序进行了建模和分析,计算结果表明:首先,我国原公路桥规关于梯度温度的规定明显不合适,而且是偏于不安全,依据该桥规中的梯度温度规定计算是造成曲线箱梁梁体发生支座脱空和径向偏移的原因之一。

  其次,原有设计偏心(9cm)偏小,造成6 墩和12 桥台处内侧和外侧支座的反力相差过大,在一期和二期恒载作用下,内侧支座反力约为400kN,而外侧支座反力为1600kN。此时,内侧支座还不至于出现拉力。但是,在不利温度作用下内侧支座会出现约130kN的拉力,造成内侧支座脱空,梁体发生向外侧约1度的扭转变形,垂直面内的高差约8cm。

  再次,由于整个曲线箱梁桥在径向的约束很弱,在常年温差和日照温差的联合持续作用下,梁体发生向外侧的径向偏移,单种温度工况时最大的偏移达1.1 cm,由于梁体已经发生较大的扭转变形,使得该径向偏移不能自动复位,并随时间增长持续加大,这种现象国内多称之为——非线性爬行,这也与现场实测偏移逐年增大的结果相吻合。

  通过施加反向温差的计算表明,不会造成沿径向的偏移情况,因此说,不利的桥位、支座设置和温度场(常年温差和日照温差)的综合作用是造成梁体发生非正常错位的主要原因。

  2、处理方案

  在参考国内同类病害桥梁处理方案的基础上,并考虑到施工操作的可行性,共提出3个支座更换方案,分别是:

  处理方案1:6 联接墩和 桥台处的外侧支座均更换为单向活动支座;

  处理方案2:除 墩外,其余墩上支座均更换为

  单向活动支座;

  处理方案1: 联接墩和 桥台处的外侧支座均更换为单向活动支座;

  处理方案3:在 墩外侧增设钢管混凝土立柱、并在 墩和 台设横向挡块。

  在一般曲线连续箱梁设计中,抗扭跨径(指两抗扭墩之间的累计跨长)不宜超过100~120m,而本文分析的曲线连续箱梁桥的抗扭跨径已达180 Ill。在综合考虑并借鉴国内同类病害桥梁处理方案的基础上,决定采用处理方案3作为最终实施方案,并在实施过程中,在6 联接墩和12 桥台附近的箱梁内侧浇注了混凝土配重,以保证在不利温度效应作用下, 联接墩和 桥台处的内侧支座均保持最小400 kN以上的压力,可以保证内侧支座不再出现脱空现象。

  3、处理效果

  (1)与设计坐标对照,各桥墩、桥台在径向基本恢复到设计位置,存留的偏移量比设计位置向内偏约0.9 cm左右。

  (2)各桥墩、桥台的高程也基本恢复到设计位置, 墩处内侧基本达到设计标高,外侧仍然低约1.5cm。其余各墩的高程偏差均较小,可以满足使用要求。根据高程测量结果,梁体已经基本没有扭转变形,箱梁底面已基本调平,残余的扭转变形约 ,与原来的扭转 相比,残存的扭转变形很小。

  (3)经现场测试,在仅受自重状态下, 墩内侧支座反力约650kN, 桥台内侧支座反力约1050kN。可以保证内侧支座不再出现拉力和脱空现象。

  4、结论

  (1)温度效应对曲线连续梁桥的影响是显著的,原公路桥涵设计规范中对桥梁竖向温度梯度的规定不合理,比实际温差小很多,以此为依据所设计的曲线连续箱梁桥容易出现病害,影响正常使用。

  (2)箱梁顶、底板的温差效应是造成曲线连续箱梁扭转的主要因素,而整体升温则是曲线连续箱梁桥直接发生径向偏移的主要原因。由于箱梁发生扭转后,沿径向的偏移不能自动回复、并且长期积累,导致曲线连续箱梁桥沿径向偏移逐年增大。

  (3)支座设计要进行多方案比选和多温度工况计算,以优化支座设计和确定中间墩的预设偏心量。
Copyright © 2007-2022
服务热线:010-64708566 法律顾问:北京君致律师所 陈栋强
ICP经营许可证100299号 京ICP备10020099号  京公网安备 11010802020311号
Baidu
map